METODE PENILAIAN KEKUATAN GEMPA MENGGUNAKAN MODEL FEATURE SELECTION M5-PRIME DAN LINEAR REGRESSION
نویسندگان
چکیده
Pemetaan suatu wilayah khususnya daerah rawan bencana bagi pemangku kepentingan sangat penting sekali karena ha ini akan memberikan pengaruh terhadap kebijakan yang nanatinya ditetapkan terlebih dalam upaya penanggulangan alam gempa bumi. Memprediksi kekuatan menjadi permasalahan sampai saat belum dapat dipastikan dan bisa dilakukan adalah sebatas memprediksi dari kejadian-kejadian sebelumnya. Algoritma linear regression diterapkan diusulkan untuk digunakan sebagai model prediksi gempa, selain itu pula feature selection dengan menggunakan algoritma M5-Prime peningkatan akurasi prediksi. Hasil penelitian memperlihatkan liner berbasis mampu dijadikan nilai RMSE terbaik sebesar 0,707.
منابع مشابه
Semi-supervised Feature Selection via Rescaled Linear Regression
With the rapid increase of complex and highdimensional sparse data, demands for new methods to select features by exploiting both labeled and unlabeled data have increased. Least regression based feature selection methods usually learn a projection matrix and evaluate the importances of features using the projection matrix, which is lack of theoretical explanation. Moreover, these methods canno...
متن کاملOptimal Learning in Linear Regression with Combinatorial Feature Selection
Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However, use of a template does not certify that the paper has been accepted for publication in the named journal. INFORMS journal templates are for the exclusive purpose of submitting to an INFORMS journal and should not be used to distribute the papers in print ...
متن کاملPenambahan emosi menggunakan metode manipulasi prosodi untuk sistem text to speech bahasa Indonesia
Abstrak—Text To Speech (TTS) merupakan suatu sistem yang dapat mengonversi teks dalam format suatu bahasa menjadi ucapan sesuai dengan pembacaan teks dalam bahasa yang digunakan. Fokus penelitian yaitu suatu konsep pengucapan natural, dengan usaha “memanusiakan” pelafalan sintesa suara sistem Text To Speech yang dihasilkan. Kebutuhan utama yang digunakan untuk sistem Text To Speech dalam peneli...
متن کاملFeature Selection, Sparsity, Regression Regularization
from Wikipedia A feature selection algorithm can be seen as the combination of a search technique for proposing new feature subsets, along with an evaluation measure which scores the different feature subsets. The simplest algorithm is to test each possible subset of features finding the one which minimizes the error rate. This is an exhaustive search of the space, and is computationally intrac...
متن کاملFeature Selection for Regression Problems
Feature subset selection is the process of identifying and removing from a training data set as much irrelevant and redundant features as possible. This reduces the dimensionality of the data and may enable regression algorithms to operate faster and more effectively. In some cases, correlation coefficient can be improved; in others, the result is a more compact, easily interpreted representati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JIP (Jurnal Informatika Polinema)
سال: 2022
ISSN: ['2614-6371', '2407-070X']
DOI: https://doi.org/10.33795/jip.v9i1.989